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Abstract

A symmetric double well potential on [0,a] is defined as symmetric with respect to midpoint a/2
and quarter point a/4, also nonincreasing on [0,a/4]. In this study, some gaps between eigen-
values are minimized and maximized for Hill’s equation with Neumann boundary conditions
when the potential is symmetric double well.
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1 Introduction

We are concerned with Hill’s equation

y′′ (t) + [λ− q (t)] y (t) = 0, t ∈ [0, a] (1.1)

where λ is a real parameter, q (t) is a real-valued, continuous and periodic function with period
a. This equation is explained with different boundary conditions. Equation (1.1) with boundary
conditions y(0) = y(a) and y′(0) = y′(a) is defined as periodic problem. The eigenvalues of this
problem are countable infinity and denoted by {λn}. Equation (1.1) with boundary conditions
y(0) = −y(a) and y′(0) = −y′(a) is defined as semi-periodic problem or anti-periodic problem and
denoted by {µn}. Equation (1.1) with boundary conditions y(0) = y(a) = 0 is named by Dirich-
let boundary value problem with eigenvalues {Λn} and Equation (1.1) with boundary conditions
y′(0) = y′(a) = 0 is named by Neumann boundary value problem with eigenvalues {νn}.

We know the relationship between eigenvalues of Hills equation proven by [7] as following:

−∞ < λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < ....

and for n = 0, 1, 2, ...

µ2n ≤ Λ2n ≤ µ2n+1, λ2n+1 ≤ Λ2n+1 ≤ λ2n+2,

µ2n ≤ ν2n+1 ≤ µ2n+1, λ2n+1 ≤ ν2n+2 ≤ λ2n+2. (1.2)

Also, we should remark that for λ ∈ (λ2n, µ2n)∪ (µ2n+1, λ2n+1) , all solutions of Hill’s equation
are bounded in (−∞,+∞) and for λ ∈ (−∞, λ0) ∪ (µ2n, µ2n+1) ∪ (λ2n+1, λ2n+2) , all nontrivial
solutions of Hill’s equation are unbounded in (−∞,+∞) . For this instability intervals of Hill’s
equation with symmetric potentials have been investigated by many authors. Some important
studies of them are [1, 5, 6, 9, 10, 11].
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A symmetric double well potential on [0, a] is defined as symmetric with respect to midpoint
a/2 and quarter point a/4, also nonincreasing on [0, a/4]. Double-well potential structures provide
rich capabilities for single electron control via different physical characteristics of the potentials
and the electron state. Especially in recent years, since quantum mechanic has gained importance,
there are a lot of studies on eigenvalues of Hill’s equation and Schrodinger operator with symmetric
double well potential. [16] extends the analytical transfer matrix method to solve the energy
splitting in an arbitrary symmetric double well potential. In [12], semiclassical periodic orbit
theory is applied to the double-well eigenvalue problem to show how unified approach describes the
quite different character of the level splitting (in the case of symmetric wells) and level shifts (in
the asymmetric case) caused by tunneling. In [4], the effect of molecular symmetry on coherent
tunneling in symmetric double-well potentials whose two molecular equilibrium configurations are
interconverted by nuclear permutations is discussed. This is illustrated with vibrational tunneling
in ammonia molecules, electronic tunneling in the dihydrogen cation, and laser-induced rotational
tunneling of homonuclear diatomics. [15] investigates the tunneling dynamics of a three-dimensional
cigar-shaped dipolar BoseEinstein condensate of 52Cr atoms in an axially-symmetric double-well
potential. [17] gives how the driving field and strong interatomic interaction affect the parity-time
symmetry and stability of two interacting bosons in a non-Hermitian double-well system by means
of a multiple-time-scale asymptotic analysis. [2] determines the effect of a uniform magnetic field on
the electron state interference pattern manifesting in a focusing double-well potential structure by
conducting Wigner quantum transport experiments. In [14], the spectral structure and many-body
dynamics of two and three repulsively interacting bosons trapped in a one-dimensional double-well,
for variable barrier height, inter-particle interaction strength, and initial conditions are examined.
[3] and [10] are especially referred that q(t) is a symmetric double well potential in Hill’s equation.
The eigenvalue gap for Schrodinger operators on an interval with Dirichlet and Neumann boundary
conditions is considered in [3] and some results about the first instability interval are obtained in
[10].

In this paper, we give the length between Neumann and the periodic eigenvalues, also the bounds
of the length between Neumann and semi-periodic eigenvalues, when the potential is symmetric
double well. We note that a symmetric double well potential on [0, a] means a continuous function
q(t) on [0, a] which is symmetric on [0, a] as well as on

[
0, a2

]
and non-increasing on

[
0, a4

]
that is,

q(t) = q(a− t) = q(a2 − t) mathematically.

2 Main results

First of all, we remark that q′ (t) exists since a monotone function on an interval I is differentiable
almost everywhere on I [8]. Our analysis is based on the following theorem of [3]:

The periodic and semi-periodic eigenvalues of Equation (1.1) satisfy, as n→∞

λ2n+1

λ2n+2
=

4 (n+ 1)
2
π2

a2
∓ 1

(n+ 1)π

∣∣∣∣∣
∫ a/4

0

q′ (t) sin

[
4(n+ 1)π

a
t

]
dt

∣∣∣∣∣
− a

16 (n+ 1)
2
π2

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
(2.1)

+ o
(
n−2

)
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and

µ2n

µ2n+1
=

(2n+ 1)
2
π2

a2

− a

4 (2n+ 1)
2
π2

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
(2.2)

+ o
(
n−2

)
.

The purpose of this study is to prove the following theorems:

Theorem 2.1. Let q (t) be a symmetric double well potential on [0, a] . Then, the length between
Neumann and the periodic eigenvalues as n→∞

ν2n+1 − λ2n =
(4n+ 1)π2

a2

− 1

nπ

∣∣∣∣∣
∫ a/4

0

q′ (t) sin

[
4nπ

a
t

]
dt

∣∣∣∣∣
−

[
a

4 (2n+ 1)
2
π2
− a

16n2π2

]

×

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
+o
(
n−2

)
.

Theorem 2.2. Let q (t) be a symmetric double well potential on [0, a] . Then, the bounds for the
length between Neumann and the semi-periodic eigenvalues as n→∞

ν2n+2 − µ2n+1 ≥
(4n+ 3)π2

a2
− 1

(n+ 1)π

∣∣∣∣∣
∫ a/4

0

q′ (t) sin

[
4(n+ 1)π

a
t

]
dt

∣∣∣∣∣
−

[
a

16 (n+ 1)
2
π2
− a

4 (2n+ 1)
2
π2

]

×

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
+ o(n−2)

and



142 E. Başkaya

ν2n+2 − µ2n+1 ≤
(4n+ 3)π2

a2
+

1

(n+ 1)π

∣∣∣∣∣
∫ a/4

0

q′ (t) sin

[
4(n+ 1)π

a
t

]
dt

∣∣∣∣∣
−

[
a

16 (n+ 1)
2
π2
− a

4 (2n+ 1)
2
π2

]

×

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
+ o(n−2).

Proof of Theorem 2.1: By Equation (1.2), we obtain the bounds for ν2n+1 − λ2n that

µ2n − λ2n ≤ ν2n+1 − λ2n ≤ µ2n+1 − λ2n. (2.3)

By rewriting λ2n+2 from Equation (2.1) for 2n, we get that

λ2n =
4n2π2

a2
+

1

nπ

∣∣∣∣∣
∫ a/4

0

q′ (t) sin

[
4nπ

a
t

]
dt

∣∣∣∣∣
− a

16n2π2

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
+ o

(
n−2

)
.

By using the last equation and Equation (2.2), we calculate that

µ2n+1 − λ2n =
(4n+ 1)π2

a2
− 1

nπ

∣∣∣∣∣
∫ a/4

0

q′ (t) sin

[
4nπ

a
t

]
dt

∣∣∣∣∣
−
[

a

4(2n+ 1)2π2
− a

16n2π2

]
×

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
+ o

(
n−2

)
and this also equals to µ2n+1 = µ2n from Equation (2.2). So from Equation (2.3), the lower and

upper bounds are same for ν2n+1 − λ2n and this proves the theorem.
Proof of Theorem 2.2: By Equation (1.2), we obtain the bounds for ν2n+2 − µ2n+1 that

λ2n+1 − µ2n+1 ≤ ν2n+2 − µ2n+1 ≤ λ2n+2 − µ2n+1. (2.4)

By using Equation (2.2) and Equation (2.3), we calculate that
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λ2n+1 − µ2n+1 =
(4n+ 3)π2

a2
− 1

(n+ 1)π

∣∣∣∣∣
∫ a/4

0

q′ (t) sin

[
4(n+ 1)π

a
t

]
dt

∣∣∣∣∣
−

[
a

16 (n+ 1)
2
π2
− a

4 (2n+ 1)
2
π2

]

×

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
+ o(n−2)

and

λ2n+2 − µ2n+1 =
(4n+ 3)π2

a2
+

1

(n+ 1)π

∣∣∣∣∣
∫ a/4

0

q′ (t) sin

[
4(n+ 1)π

a
t

]
dt

∣∣∣∣∣
−

[
a

16 (n+ 1)
2
π2
− a

4 (2n+ 1)
2
π2

]

×

[
aq2 (a) + 2a

∫ a/4

0

q(t)q′ (t) dt− 8

∫ a/4

0

tq(t)q′ (t) dt

]
+ o(n−2).

The last equations and Equation (2.4) prove the theorem.

3 An example

q(x) = cos2x is important function and used with different types in Schrodinger equations as
potential. This function is one of the examples of symmetric double well potential. Besides,
Equation (1.1) with q(x) = εcos2x is known as Mathieu Equation. Here ε is a real parameter.
Mathieu equation occurs in a broad spectrum of physical problems, for example, when the wave
equation is separated using elliptic coordinates. Also, it describes the motion in periodic potentials,
like the trajectory of an electron in an array of atoms, the mechanics of the quantum pendulum,
and the motion of charged particles inside a quadrupole mass-filter [13]. So, if we rewrite our
conclusions for q(x) = εcos2x on [0, 2π], we reach the following results, as n→∞:

ν2n+1 − λ2n =
4n+ 1

4
−

[
ε2

2 (2n+ 1)
2 −

ε2

8n2

]
+ o

(
n−2

)
,

ν2n+2 − µ2n+1 =
4n+ 3

4
−

[
ε2

8 (n+ 1)
2 −

ε2

2 (2n+ 1)
2

]
+ o

(
n−2

)
The last equality holds because integral term

∣∣∣∫ a/40
q′ (t) sin

[
4(n+1)π

a t
]
dt
∣∣∣ is zero for q(x) =

εcos2x and a = 2π, so the upper bound equals the lower bound in Theorem 2.2.
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